In order to explore just what might have happened in the original investigation, we then used the original NS parameters as a starting point in another refinement, keeping the value of B, however, at 3.33. The first cycle of this series gave $R=8.3 \%$ and $\Sigma w \Delta^{2}=$ 15.49. This series converged to a set of positional parameters which was not significantly different from the starting point, but, to our great surprise, was quite different from those obtained in our previous refinement. Moreover, the final values of R and $\Sigma w \Delta^{2}, v i z$. 8.7% and 14.34 , are both startlingly greater than the values of 3.9% and 3.11 obtained above. The parameters and molecular quantities are presented in Tables 1 and 2.

It is thus apparent that when the coordinates I of Table 1 are used as a starting point for least squares, that procedure refines to a different answer than when coordinates III are used as a starting point.

As an after-the-fact analysis as to how this could have happened (as opposed to why, a very different question) we have examined the $F_{\text {calc }}$ obtained from the two refinements. Of the $53 F_{\text {calc }}, 27$ are centric and 26 are acentric; among the former, there is one sign change, that of 004, and among the latter there is one significant phase change, caused by a change in the sign of the imaginary part of 134 . For the remainder of the acentric F 's, the phase changes average about 8°. Moreover, the ΔF 's for what we call the incorrect structure do not, to us, contain a clue which might suggest that something was awry. The average ΔF is
$0 \cdot 8$, with no outstanding discrepancies, the largest value being $4 \cdot 2$. The largest percentage discrepancies occur in the case of 004,034 , and 134 , which are $35 \%, 38 \%$, and 43%, respectively. For the correct structure, the discrepancies are $1 \%, 22 \%$, and 7%, but there is of course nothing to imply that the sign of 004 is incorrect, or that the sign of 034 is not incorrect. It might be suggested that if, in the final stages of a refinement, there remain F 's for which the discrepancies are outside some externally estimated limit, then those F 's should be omitted, and the refinement continued. This procedure seems to us a dangerous one, and we do not recommend it.
Meanwhile, we find the occurrence of a false minimum which is quite close to the true minimum rather disturbing.

This work was supported by a grant from the Na tional Science Foundation.

References

Dows, D. A. \& Rubenstein, L. (1965). Private communication.
Gantzel, P. K., Sparks, R. A., Long, R. E. \& Trueblood, K. N. (1965). UCLALS4, modified for Honeywell H800 by S. H. Goodman and H. C. Carrell.
Hamilton, W. C. (1965). Acta Cryst. 18, 502.
Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
Nordman, C. E. \& Schmitions, D. L. (1965). Acta Cryst. 18, 764.

The Crystal Structure of $\mathbf{Y}_{2} \mathrm{BeO}_{4}{ }^{*}$

By L. A. Harris and H.L. Yakel
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, U.S.A.

(Received 4 May 1966)
The crystal structure of an yttrium keryllium oxide cempound has been determined by three-dimensional Patterson and difference Fourier methods and refined by iterative least-squares calculations. The structure analysis showed the composition of the compound to be represented by $\mathrm{Y}_{2} \mathrm{BeO}_{4}$. The unit-cell dimensions are $a_{0}=3.5315 \pm 0.0005, b_{0}=9.8989 \pm 0.0010$, and $c_{0}=10.4000 \pm 0.0010 \AA$; the cell contains four formula weights of $\mathrm{Y}_{2} \mathrm{BeO}_{4}$ with an X-ray density $\varrho=4.582 \pm 0.002 \mathrm{~g} . \mathrm{cm}^{-3}$. Within the limits of a linear least-squares refinement of X -ray data the space group is Pmcn.

The structure of $\mathrm{Y}_{2} \mathrm{BeO}_{4}$ is described as consisting of ribbons of interconnected octahedra formed from two pseudo-close-packed layers of oxygen atoms between which yttrium atoms occupy octahedral interstices. The ribbons are five oxygen atoms (four octahedra) wide and extend without limit parallel to the a direction. The intersection of these ribbons forms channels which contain beryllium atoms trigonally coordinated to oxygen atoms in a coplanar group.

Introduction

Weir \& Van Valkenburg (1960) reported the formation of a compound in the binary system $\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{BeO}$ by

[^0]arc fusion. The composition of the compound was not determined since it could not be formed by solid state reactions. Potter (1960) also synthesized a compound in the same binary system by quenching a $1: 2$ molar mixture of $\mathrm{Y}_{2} \mathrm{O}_{3}$ and BeO from the molten state on a platinum strip heater. A comparison of optical and X-ray diffraction data for these two compounds showed them to be identical.

A composition $\mathrm{Y}_{2} \mathrm{Be}_{2} \mathrm{O}_{5}$ was suggested in the latter work on the basis of the absence of a detectable second phase in 1:2 quenched mixtures and the presence of free $\mathrm{Y}_{2} \mathrm{O}_{3}$ in 1:1 quenched mixtures. A preliminary report by Harris, Potter \& Yakel (1962) listed the $1: 2$ composition, but work by Bartram (1961) had indicated the formula $\mathrm{Y}_{2} \mathrm{BeO}_{4}$ for this phase. The source of the uncertainty as to composition may be understood in light of the tentative $\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{BeO}$ phase diagram given by Bartram in which the compound in question is shown to form peritectically from solid $\mathrm{Y}_{2} \mathrm{O}_{3}$ and liquid. Thus any quench on composition would contain free $\mathrm{Y}_{2} \mathrm{O}_{3}$. Quantitative chemical analyses of the quenched mixtures are therefore suspect and since, as noted above, a solid-state synthesis could not be effected, the final definition of composition waited on the analysis of the crystal structure.

The purpose of the present paper is to report the structure of this phase. The results show that the composition is represented by the formula $\mathrm{Y}_{2} \mathrm{BeO}_{4}$ and the compound will be referred to by this formula in the following description, although in reality the question of composition was not settled until relatively late in the structure derivation.

Experimental

Single crystals of $\mathrm{Y}_{2} \mathrm{BeO}_{4}$ were extracted from the quenched $1 \mathrm{Y}_{2} \mathrm{O}_{3}: 2 \mathrm{BeO}$ mixtures; they were clear, colorless, and elongated in the [100] direction. X-ray diffraction data obtained from rotation, Weissenberg, and precession photographs recorded with $\mathrm{Cu} \mathrm{K} \alpha_{1}(\lambda=$ $1.54051 \AA$) and Mo $K \alpha_{1}(\lambda=0.70926 \AA$) radiations con-
firmed the previously reported orthorhombic symmetry of the crystals and the diffraction symbol mmmP.cn (space group Pmcn or $P 2_{1} c n$). The lattice parameters were measured to be $a_{0}=3.5315 \pm 0.0005, b_{0}=9 \cdot 8989 \pm$ $0 \cdot 0010, c_{0}=10 \cdot 4000 \pm 0 \cdot 0010 \AA$. An X-ray density of $4.582 \pm 0.002 \mathrm{~g}_{\mathrm{cm}} \mathrm{cm}^{-3}$ was computed on the basis of 4 formula weights of $\mathrm{Y}_{2} \mathrm{BeO}_{4}$ in this cell. The agreement with the experimental density previously reported (Harris, Potter \& Yakel, 1962) is not good; it is possible that the sample used to obtain the high value of $5 \cdot 1 \mathrm{~g} . \mathrm{cm}^{-3}$ was not pure.

All intensity data were collected from an irregularly shaped crystal which approximated a cylinder 0.003 cm in diameter. A Weissenberg goniometer equipped with a proportional counter was first used to measure the intensities of $0 k l, 1 k l$, and $2 k l$ reflections. A second more extensive set of data was obtained with a com-puter-controlled four-circle diffractometer ($\theta-2 \theta$ scan) (Busing, Ellison \& Levy, 1964, 1965). Over 1000 individual reflection intensities were recorded in the first data set and over 3000 in the second. Nickel-filtered $\mathrm{Cu} \mathrm{K} \alpha$ radiation was used exclusively in collecting the first set and primarily in collecting the second; about 200 reflection intensities were also measured with Cu $K \beta$ radiation in the collection of the second set. Of the 495 allowed independent reflections accessible with $\mathrm{Cu} K \alpha$ radiation, 491 were recorded.

The two sets of intensity data were independently corrected for Lorentz, polarization, and absorption effects. Absorption corrections for the first data set were made assuming cylindrical crystal shape and using Bond's (1959) tables. Absorption corrections for the second set were made by approximating the crystal

Table 1. Atomic parameters for $\mathrm{Y}_{2} \mathrm{BeO}_{4}$
Least-squares standard errors are given in parentheses

	Fractional position parameter $\times 10^{5}$			Thermal parameter* $\times 10^{5}$			
Atom	x	y	z	B_{11}	B_{22}	B_{33}	$B_{23} \dagger$
Y(1)	25000	67664 (4)	9028 (4)	880 (52)	175 (6)	74 (5)	32 (2)
Y(2)	25000	8626 (4)	11738 (4)	851 (53)	171 (6)	89 (6)	-38(2)
$\mathrm{O}(1)$	25000	24361 (31)	27699 (34)	1402 (275)	152 (23)	102 (27)	-37 (22)
O(2)	75000	1841 (30)	25044 (33)	1849 (289)	72 (25)	113 (29)	12 (21)
$\mathrm{O}(3)$	75000	11518 (31)	-1297 (34)	988 (291)	182 (29)	72 (30)	-1 (22)
O (4)	25000	35344 (42)	4453 (36)	1625 (327)	569 (37)	79 (33)	-41 (29)
Be	25000	37329 (58)	19369 (69)	2004 (559)	174 (52)	222 (57)	-135 (46)

RMS thermal displacements $(\AA) \times 10^{3}$ along principal axes
Least-squares standard errors are given in parentheses

	$\overbrace{\text { Axis } 1}$	Axis 2	Axis 3	Angle 3, b \ddagger
	Y9 (2)	$75(2)$	$96(2)$	$162(1)^{\circ}$
$\mathbf{Y}(1)$	$64(2)$	$73(2)$	$97(1)$	$24(2)$
$\mathrm{Y}(2)$	$66(11)$	$94(9)$	$94(7)$	$31(14)$
$\mathrm{O}(1)$	$69(11)$	$108(8)$	$80(10)$	$103(22)$
$\mathrm{O}(2)$	$59(1)$	$79(12)$	$95(8)$	$179(13)$
$\mathrm{O}(3)$	$63(13)$	$101(10)$	$169(5)$	$5(4)$
$\mathrm{O}(4)$	$64(14)$	$133(12)$	$52(9)$	
Be	$56(23)$	$113(16)$		

* Coefficients in the expression $B_{11} h^{2}+B_{22} k^{2}+B_{33} l^{2}+2 B_{12} h k+2 B_{13} h l+2 B_{23} k l$.
$\dagger B_{12}=B_{13}=0$ for 4(c) positions of Pmcn.
\ddagger By symmetry one of the axes must be in the a direction; this is axis 2 in all cases. The angle is between axis 3 and the b axis, measured clockwise, looking down the positive a axis.
shape with seven bounding planes and using the ORABS computer program of Wehe, Busing \& Levy (1962). The data sets were then collated and intensities of equivalent reflections averaged. Relative $|F|^{2}$ values were placed on an approximate absolute scale after the method of Wilson (1942). This calculation was performed with the computer program ORSTAT (Yakel, 1964) which also tested the statistical distribution of intensities in the general $h k l$ data and in particular zones of data. The distribution in the general $h k l$ set was centric. During the refinement of the trial structure, a correction for secondary extinction was made for all data using the method proposed by Zachariasen (1963).

The structure

Derivation

If, as the statistical tests suggest, one assumes the space group of $\mathrm{Y}_{2} \mathrm{BeO}_{4}$ to be Pmcn, then the mirror planes normal to a at $x=\frac{1}{4}$ and $\frac{3}{4}$ are only $1 \cdot 766 \AA$ apart. Considerations of atom size and environment make it most probable that the 8 yttrium and 20 oxygen atoms in each unit cell would lie on the mirrors. Barring disorder, the 4 beryllium atoms would also be constrained to the same planes. This arrangement was supported by the regular decrease in observed $|F|^{2}$ values for reflections with identical k and l and $h=0,2$, and 4 , or $h=1$ and 3 .

Table 2. Comparison of observed and calculated $F^{2}(h k l)$ E signifies apparent extinction effect on F^{2} (obs.) R signifies apparent Renninger effect on F^{2} (obs.)

Three-dimensional Patterson functions were computed in sections normal to the u axis. As expected, all distinguishable Patterson peaks were found in the $u=0$ and $\frac{1}{2}$ sections. Calculated interatomic vectors for two sets of yttrium atoms located in the 4(c) positions of Pmon were readily matched to the strongest of these peaks. Oxygen and beryllium atoms were found by difference-Fourier methods. All atoms were at $x=\frac{1}{4}$ or $\frac{3}{4}$, and no indications of possible deviations from these planes, with a consequent lowering of space group symmetry to $P 2_{1} c n$, could be discovered.

Refinement

A structure factor calculation made with the scale and temperature factors given by Wilson's method and with the atomic positional parameters given by the Fourier functions showed an agreement index $R_{1}=$ $0 \cdot 14$, where $R_{1}=\Sigma\left(|F|_{o}-|F|_{c}\right) / \Sigma|F|_{o}$. The atomic scattering factors for this and subsequent calculations were taken from Cromer \& Waber (1964) (for Be, Be^{+}, and Be^{2+}) and from International Tables for X-ray Crystallography (1962) (for $\mathrm{Y}, \mathrm{Y}^{3+}, \mathrm{O}$, and O^{-}). Anomalous dispersion corrections to the scattering by yttrium were included from the latter tables ($\Delta f^{\prime}(\mathrm{Y})=$ 0.7 electron, $\Delta f^{\prime \prime}(\mathrm{Y})=2 \cdot 2$ electrons).

The initial parameters were refined by iterative leastsquares calculations (Busing, Martin \& Levy, 1962). The observations were weighted in inverse proportion to the variance defined as

$$
\begin{aligned}
& \sigma^{2}\left(F^{2}\right)=s\left(A^{*} / \mathrm{Lp}\right)^{2}\left[\sigma_{s t}^{2}+(0.05 \mathrm{~N})^{2}\right] \\
& \quad+0.010\left(F_{\text {corr }}^{2}-F_{\text {uncorr }}^{2}\right)^{2}
\end{aligned}
$$

where s is a scale factor, A^{*} is an absorption correction, Lp is the Lorentz-polarization correction, $\sigma_{s t}^{2}$ is the statistical variance of N, the net count, $F_{\mu n c o r r}^{2}$ and $F_{\text {corr }}^{2}$ are the observed values of F^{2} before and after correction for secondary extinction. With the inclusion of anisotropic individual atom temperature factors, the final value of R_{1} was 0.027 and that of R_{2} was 0.060 $\left[R_{2}=\Sigma\left(\left|F_{o}^{2}-F_{c}^{2}\right|\right) / \Sigma\left|F_{o}^{2}\right|\right]$.

Atomic position and thermal parameters from the final least-squares cycle are presented in Table 1. A comparison of observed F^{2} values with those computed from the final parameters is given in Table 2. The scattering factors used were for $\mathrm{Y}^{3+}, \mathrm{Be}^{0}$, and O^{-}. Results when other combinations of scattering factors (e.g. $\mathrm{Y}^{0}, \mathrm{Be}^{0}$, and O^{0}) were used were the same as far as atom parameters and R values were concerned; the $\mathrm{Y}^{3+}, \mathrm{Be}^{0}, \mathrm{O}^{-}$combinations gave the lowest value of $\Sigma_{1}\left(=\sqrt{\Sigma\left(w\left(F_{o}^{2}-F_{c}^{2}\right)^{2}\right.} / \sqrt{n-m}\right.$, where w is a weight, n is the number of observations, and m the number of variable parameters). This value of Σ_{1} was 1.47 ; the next lowest Σ_{1} was computed at 1.52 for the scattering factor combination ($\mathrm{Y}^{3+}, \mathrm{Be}^{2+}, \mathrm{O}^{-}$). The ratio is 1.034 which, by Hamilton's (1965) test is significant at the 0.5% level ($R_{3,450,} 0.005=1.009$).

Despite the absence of any evidence that it might be required, an attempt was made to refine the data with parameters based on the acentric space group $P 2_{1} c n$.

The x parameters of two atoms were deliberately changed from $\frac{1}{4}$ and a least-squares cycle was computed. No significant lowering of the R values was obtained and the temperature factors of two oxygen atoms and the beryllium atom in the asymmetric unit became negative. One must conclude that, on the basis of X-ray diffraction data refined by linear least-squares methods, the atom arrangement in $\mathrm{Y}_{2} \mathrm{BeO}_{4}$ is adequate-

Table 3. Interatomic distances and angles in $\mathrm{Y}_{2} \mathrm{BeO}_{4}$ Distances

			Standard deviation
(2)	$\mathrm{Y}(1)-\mathrm{O}(1)$	2.337 A	$0.002 \AA$
	$\mathrm{Y}(1)-\mathrm{O}(2)$	2.280	0.003
	$\mathrm{Y}(1)-\mathrm{O}(3)$	2.212	0.003
(2)	$\mathrm{Y}(1)-\mathrm{O}(4)$	2.274	0.002
	$\mathrm{Y}(2)-\mathrm{O}(1)$	$2 \cdot 276$	0.003
(2)	$\mathrm{Y}(2)-\mathrm{O}(2)$	$2 \cdot 342$	0.002
(2)	$\mathrm{Y}(2)-\mathrm{O}(3)$	2.245	0.002
	$\mathrm{Y}(2)-\mathrm{O}\left(3^{\prime}\right)$	2.271	0.003
	$\mathrm{Be}-\mathrm{O}(1)$	1.549	0.007
	$\mathrm{Be}-\mathrm{O}(2)$	$1 \cdot 550$	0.006
	$\mathrm{Be}-\mathrm{O}(4)$	$1 \cdot 564$	0.008
Angles			
			Standard deviation
	$\mathrm{O}(1)-\mathrm{Y}(1)-\mathrm{O}(1)$	98.1°	$0 \cdot 1{ }^{\circ}$
(2)	$\mathrm{O}(1)-\mathrm{Y}(1)-\mathrm{O}(2)$	$76 \cdot 5$	$0 \cdot 1$
(2)	$\mathrm{O}(1)-\mathrm{Y}(1)-\mathrm{O}(3)$	87.2	$0 \cdot 1$
(2)	$\mathrm{O}(1)-\mathrm{Y}(1)-\mathrm{O}(4)$	79.3	$0 \cdot 1$
(2)	$\mathrm{O}(1)-\mathrm{Y}(1)-\mathrm{O}(4)$	171.0	$0 \cdot 1$
	$\mathrm{O}(2)-\mathrm{Y}(1)-\mathrm{O}(3)$	$154 \cdot 7$	$0 \cdot 1$
(2)	$\mathrm{O}(2)-\mathrm{Y}(1)-\mathrm{O}(4)$	111.0	$0 \cdot 1$
(2)	$\mathrm{O}(3)-\mathrm{Y}(1)-\mathrm{O}(4)$	$84 \cdot 1$	$0 \cdot 1$
	$\mathrm{O}(4)-\mathrm{Y}(1)-\mathrm{O}(4)$	101.9	$0 \cdot 1$
(2)	$\mathrm{O}(1)-\mathrm{Y}(2)-\mathrm{O}(2)$	76.4	$0 \cdot 1$
	$\mathrm{O}(1)-\mathrm{Y}(2)-\mathrm{O}\left(3^{\prime}\right)$	$161 \cdot 7$	$0 \cdot 1$
(2)	$\mathrm{O}(1)-\mathrm{Y}(2)-\mathrm{O}(3)$	$110 \cdot 7$	$0 \cdot 1$
	$\mathrm{O}(2)-\mathrm{Y}(2)-\mathrm{O}(2)$	97.9	$0 \cdot 1$
(2)	$\mathrm{O}(2)-\mathrm{Y}(2)-\mathrm{O}(3)$	78.5	$0 \cdot 1$
(2)	$\mathrm{O}(2)-\mathrm{Y}(2)-\mathrm{O}(3)$	$170 \cdot 6$	$0 \cdot 1$
(2)	$\mathrm{O}(2)-\mathrm{Y}(2)-\mathrm{O}\left(3^{\prime}\right)$	91.8	$0 \cdot 1$
	$\mathrm{O}(3)-\mathrm{Y}(2)-\mathrm{O}(3)$	103.8	$0 \cdot 1$
(2)	$\mathrm{O}(3)-\mathrm{Y}(2)-\mathrm{O}\left(3^{\prime}\right)$	79.8	0.1
	$\mathrm{O}(1)-\mathrm{Be}-\mathrm{O}(2)$	124.0	0.5
	$\mathrm{O}(1)-\mathrm{Be}-\mathrm{O}(4)$	$116 \cdot 8$	0.4
	$\mathrm{O}(2)-\mathrm{Be}-\mathrm{O}(4)$	119.2	0.5

Oxygen-oxygen separations in ribbon
In layers

(2)	$\mathrm{O}(1)-\mathrm{O}(3)$	$3.719 \pm 0.004 \AA$
(2)	$\mathrm{O}(1)-\mathrm{O}(1)$	3.5315 ± 0.0005
(2)	$\mathrm{O}(1)-\mathrm{O}(3)$	3.137 ± 0.004
(2)	$\mathrm{O}(2)-\mathrm{O}(4)$	3.753 ± 0.004
(2)	$\mathrm{O}(2)-\mathrm{O}(2)$	3.5315 ± 0.0005
(2)	$\mathrm{O}(2)-\mathrm{O}(3)$	3.312 ± 0.004
	Between layers	
	$\mathrm{O}(1)-\mathrm{O}(4)$	$2.944 \pm 0.005 \AA$
(2)	$\mathrm{O}(1)-\mathrm{O}(2)$	2.857 ± 0.004
	$\mathrm{O}(2)-\mathrm{O}(3)$	2.902 ± 0.005

Oxygen-oxygen separations between ribbons (about Be)

$\mathrm{O}(1)-\mathrm{O}(2)$	$2.735 \pm 0.005 \AA$
$\mathrm{O}(2)-\mathrm{O}(4)$	2.686 ± 0.005
$\mathrm{O}(1)-\mathrm{O}(4)$	2.651 ± 0.005

ly represented by positions in the space group Pmcn. A final three-dimensional difference Fourier synthesis with all atoms removed showed no peak containing more than 0.3 electron; this peak was associated with a diffraction ripple from an yttrium atom.

Description

Important interatomic distances and angles were computed from the parameters of Table 1 with the ORFFE computer program of Busing, Martin, \& Levy (1964). They are listed in Table 3. The following paragraphs will refer the reader to Figs.1-3, which were drawn with the ORTEP program (Johnson, 1965).
The structure of $\mathrm{Y}_{2} \mathrm{BeO}_{4}$ contains ribbons of edgesharing octahedra formed from two pseudo-close-
packed layers of oxygen atoms between which yttrium atoms occupy octahedral interstices. The long direction of the ribbons is parallel to a and they are five oxygen atoms (four octahedra) wide. A given ribbon touches (and shares oxygen with) two other ribbons at either end of its width; the touching ribbons diverge at an angle of 52° leaving rather narrow channels running through the crystal in the a direction. These features are easily seen in Fig. 1.

Close yttrium-oxygen interatomic contacts vary from 2.21 to $2.34 \AA$ (average $2 \cdot 286 \AA$). They are comparable to the average separation of $2 \cdot 297 \AA$ reported for the more distorted octahedra in $\mathrm{Y}_{2} \mathrm{O}_{3}$ (Paton \& Maslen, 1965). Oxygen-oxygen interatomic contacts in a pseudo-close-packed layer of a ribbon are signifi-

Fig. 1. Stereoscopic drawings of a section of the $\mathrm{Y}_{2} \mathrm{BeO}_{4}$ structure viewed along a direction 10° from $-\mathbf{a}$. The horizontal direction is parallel to \mathbf{b}. Atoms have been drawn as spheres of arbitrary radius: the largest are Y , next largest Be , and smallest O . Oxygen atoms in an octahedron about an yttrium atom have been connected along the octahedron edges. The unit-cell outline has its raised lower left hand origin at $x=0 \cdot 5, y=-0 \cdot 5, z=0$.

Fig.2. Stereoscopic drawings of atom environments about $\mathrm{Y}(1), \mathrm{Y}(2)$, and Be . The direction of view and structure orientation is the same as that of Fig. 1 except for a 16° clockwise rotation about the vertical drawing axis. The Be atom has the coordinates listed in Table 1 . Atoms are represented by thermal displacement ellipsoids including 99.9% probability ($4 \times$ r.m.s. displacement).
cantly greater than those between layers of the same ribbon. Oxygen atoms of a layer deviate from a plane (such as $0.831 y-0.403 z=1$) by no more than $0.2 \AA$.

An octahedron about a Y(2) atom shares edges with six octahedra in the same ribbon and shares one corner [as at $\mathrm{O}\left(3^{\prime}\right)$] with an octahedron in a touching ribbon. An octahedron about a $\mathrm{Y}(1)$ atom shares edges with four octahedra in the same ribbon and shares one corner with an octahedron in a touching ribbon. Thus, an oxygen atom of a $\mathrm{Y}(2)$ octahedron is in close contact with 3 or 4 yttrium atoms, while an oxygen atom of a $\mathrm{Y}(1)$ octahedron has only 2 or 3 close yttrium atom neighbors. The oxygen atom with 2 such neighbors is $\mathrm{O}(4)$. As one may see in Fig.2, this atom has an unusually large component of thermal vibration normal to the $\mathrm{O}(4)-\mathrm{Y}(1)$ vector in a direction which crosses an inter-ribbon channel. The behavior of the $\mathrm{O}(4)$ atom probably accounts for much of the distortion of the octahedron about $\mathrm{Y}(1)$ and, to a lesser degree, about Y(2).

Along the channels, and lying at about the center of a triangle of oxygen, are beryllium atoms which act as a 'glue' holding three separate yttrium-oxygen ribbons together. The mirror plane of symmetry requires the atoms of this group to be coplanar. Berylliumoxygen separations average $1.55 \AA$, or about $0 \cdot 1 \AA$ shorter than the characteristic tetrahedral separation. The thermal vibration of the beryllium atom is large in the a direction and in a direction along the interribbon channel.

An interesting analogy is found between the structure of $\mathrm{Y}_{2} \mathrm{BeO}_{4}$ and that of malachite, $\mathrm{Cu}_{2}(\mathrm{OH})_{2}\left(\mathrm{CO}_{3}\right)$ (Wells, 1951). In a projection down its short \mathbf{c} axis malachite is seen to contain ribbons of quite distorted $\mathrm{Cu}-\mathrm{O}(\mathrm{OH})$ octahedra with carbon atoms tying three separate ribbons together (Fig.3). The ribbons are only two octahedra wide in malachite and the interribbon channels are open in the a direction rather than
closed, as in the \mathbf{c} direction of $\mathrm{Y}_{2} \mathrm{BeO}_{4}$. While caution must be exercised in describing a BeO_{3} group analogous to the CO_{3} group, the similarity between the role of beryllium in $\mathrm{Y}_{2} \mathrm{BeO}_{4}$ and that of carbon in malachite is striking.

Discussion

The only previous observation of a threefold berylliumoxygen coordination was in $\mathrm{Ca}_{12} \mathrm{Be}_{17} \mathrm{O}_{29}$ (Harris \& Yakel, 1966) where Be-O separations in trigonal groups averaged $1.58 \AA$ and small displacements of beryllium atoms from the planes of the oxygen atoms were found. In that instance too, it was suggested that the trigonally coordinated beryllium atoms were acting as a 'glue' between more normally bound parts of the structure. Further similarities can be noted in the method of preparation and properties of $\mathrm{Y}_{2} \mathrm{BeO}_{4}$ and $\mathrm{Ca}_{12} \mathrm{Be}_{17} \mathrm{O}_{29}$. The compounds were most readily formed by quenching from the liquid state; neither has been clearly shown to form in solid state reactions; both tend to dissociate into component oxides on heating.
One may speculate that the atomic environments in both compounds are more nearly representative of liquids than of equilibrium solids. If this be true, the occurrence of trigonally coordinated beryllium in both structures may reflect the occurrence of the same configuration in the liquid. The recently reported phase transition in pure BeO (Smith, Cline \& Frechette, 1962) at $2100^{\circ} \mathrm{C}$ (the melting point is $2530^{\circ} \mathrm{C}$) has been shown to involve a decrease in the symmetry of the beryllium-oxygen coordination polyhedron (Smith, Cline \& Austerman, 1965). This may also indicate that the oxygen coordination number or geometry of beryllium changes in the solid-liquid transition.

The authors wish to thank H.A.Levy and his group in the Chemistry Division of the Oak Ridge National

Fig.3. Stereoscopic drawings of a section of the malachite, $\mathrm{Cu}_{2}(\mathrm{OH})_{2}\left(\mathrm{CO}_{3}\right)$, structure viewed along a direction 10° from the normal to the $a b$ plane (i.e. $\sim+\mathbf{c}$). The horizontal direction is parallel to \mathbf{b}. Atoms have been drawn as spheres with the same radii used in Fig. 1: the largest are Cu , next largest C . and smallest O or OH . Oxygen atoms in a pseudo-octahedron about a copper atom have been connected along octahedron edges. The unit cell outline has its raised lower left hand origin at $x=0$, $\mathrm{y}=0, z=0$.

Laboratory, who made their automated diffractometer available for the collection of the data reported here. We are also indebted to R.A. Potter of the Metals and Ceramics Division, who participated in the preparation of the crystals.

References

Bartram, S. F. (1961). General Electric Co., Aircraft Nuclear Propulsion Department, DC 61-7-10.
Bond, W. L. (1959). In International Tables for X-ray Crystallography. Vol. II. Birmingham: Kynoch Press.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). A Fortran Crystallographic Least-Squares Program, ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). A Fortran Crystallographic Function and Error Program. ORNL-TM-306. Oak Ridge National Laboratory, Tennessee.
Busing, W. R., Ellison, R. D. \& Levy, H. A. (1964). Computer-Controlled X-ray Diffractometer. Chemistry Division Ann. Progr. Rept. ORNL-3679 (June 20), p. 100. Oak Ridge National Laboratory, Tennessee.

Busing, W. R., Ellison, R. D. \& Levy, H. A. (1965). Computer-Controlled X-Ray Diffractometer, Chemistry Division Ann. Progr. Rept. ORNL-3832 (May 20), p. 128. Oak Ridge National Laboratory, Tennessee.
Cromer, D. T. \& Waber, J. T. (1964). Los Alamos Scientific Laboratory, New Mexico, LA-3056.

Hamilton, W. C. (1965). Acta Cryst. 18, 502.
Harris, L. A., Potter, R. A. \& Yakel, H. L. (1962). Acta Cryst. 15, 615.
Harris, L. A. \& Yakel, H. L. (1966). Acta Cryst. 20, 295.
International Tables for X-ray Crystallography (1962), Vol. III. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORTEP, A Fortran ThermalEllipsoid Plot Program for Crystal-Structure Illustrations. ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Paton, M. G. \& Maslen, E. N. (1965). Acta Cryst. 19, 307. Potter, R. A. (1960). Metallurgy Division Ann. Progr. Rept., ORNL-2988, pp. 188-190. Oak Ridge National Laboratory, Tennessee.
Smith, D. K., Cline, C. F. \& Frechette, V. D. (1962). J. Nucl. Materials, 6, 265.

Smith, D. K., Cline, C. F. \& Austerman, S. B. (1964). Acta Cryst. 18, 393.
Wehe, D. J., Busing, W. R. \& Levy, H. A. (1962). A Fortran Program for Calculating Single Crystal Absorption Corrections. ORNL-TM-229. Oak Ridge National Laboratory, Tennessee.
Weir, C. E. \& Van Valkenburg, A. (1960). J. Res. Nat. Bur. Stands 64A, no. 1, 105.
Wells, A. F. (1951). Acta Cryst. 4, 200.
Wilson, A. J. C. (1942). Nature, Lond. 150, 152.
Yakel, H. L. (1964). ORSTAT, A Fortran Program for the Statistical Analysis of Diffraction Data, ORNL-TM-750. Oak Ridge National Laboratory, Tennessee.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139.

The Crystal Structure of $\mathbf{C e}_{5} \mathbf{M g}_{42}$

By Quintin Johnson and Gordon S. Smith
Lawrence Radiation Laboratory, University of California, Livermore, California, U.S.A.

(Received 19 June 1966)
The structure of the compound present in the $\mathrm{Ce}-\mathrm{Mg}$ system at the approximate stoichiometry of CeMg_{8} has been determined with the use of diffractometrically recorded single-crystal intensities. The unit cell, containing two formula units of $\mathrm{Ce}_{5} \mathrm{Mg}_{42}$, is body-centered tetragonal with $a=14 \cdot 78$, $c=10.43 \AA$. The calculated density is $2.51 \mathrm{~g} . \mathrm{cm}^{-3}$, and the space group, as confirmed by the final structure, is $I 4 / \mathrm{m}$.

Introduction

During a phase-relation study of the magnesium-rich region of the $\mathrm{Ce}-\mathrm{Mg}$ system (Wood \& Cramer, 1965), a new compound with a tentative composition $\mathrm{CeMg}_{8 \cdot 25}$ was discovered. The composition and symmetry indicated this to be a new structure type; therefore, we have carried out a determination of this structure by conventional single-crystal X-ray diffraction techniques. Additional interest in this study resulted from the expectation that, in view of the similarity of cell constants, a simple relationship would be found to connect this structure with the other structures oc-
curring in the magnesium-rich region (Savitskii, Terekhova, Burov, Markova \& Naumkin, 1962; Evdokimenko \& Kripyakevich, 1963; Johnson, Smith, Wood \& Cramer, 1964; Johnson \& Smith, 1966).

Experimental

The sample of $\mathrm{Ce}_{5} \mathrm{Mg}_{42}$ used in this investigation was kindly provided by D. Wood. Details concerning the preparation are given by Wood \& Cramer (1965).

Single-crystal oscillation, Weissenberg, and precession photographs showed tetragonal symmetry. The observed extinctions $(h+k+l \neq 2 n)$ and $4 / m$ Laue

[^0]: * Research sponsored by the United States Atomic Energy Commission under contract with the Union Carbide Corporation.

